
Maximum Likelihood (ML) Decoding: Given a received word / symbol sequence ത𝑦, the 

codeword ҧ𝑐 (or message ത𝑢) that maximizes the channel transition probability 𝑃 ത𝑦 ҧ𝑐 is the 

decoding output which is denoted as መҧ𝑐 (or ෠ത𝑢). That says

⚫ Based on Bayes' theorem, the a posteriori probability can be determined as 
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⚫ By assuming equiprobable codeword as 𝑃 ҧ𝑐 = Ȼ −1, the ML decoding output 

coincides with the MAP decoding.

መҧ𝑐 = argmax
ҧ𝑐∈Ȼ

𝑃 ത𝑦 ҧ𝑐 .

𝑃 ҧ𝑐 ത𝑦 =
𝑃 ത𝑦 ҧ𝑐 𝑃 ҧ𝑐

𝑃 ത𝑦
.

Maximum A Posteriori (MAP) Decoding: Given ത𝑦, the codeword ҧ𝑐 (or message ത𝑢) that 

maximizes the MAP 𝑃 ҧ𝑐 ത𝑦 is the decoding output. That says

መҧ𝑐 = argmax
ҧ𝑐∈Ȼ

𝑃 ҧ𝑐 ത𝑦 .



Union Bound

⚫ Union bound can be used to characterize the ML decoding performance of codes, which 

requires knowledge of the code’s weight spectrum (distribution of codewords of 

different weights).
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⚫ Union upper bound on a linear block code’s ML decoding frame error rate (FER) over the 

AWGN channel is

⚫ The codeword 𝑐1
𝑁 = ҧ𝑐 = {𝑐₁, 𝑐₂,∙∙∙, 𝑐𝑁} ∈ Ȼ of a linear block code has discrete weight 

values, denoted as {𝑑₀, 𝑑₁, 𝑑₂, … , 𝑑𝑠}, where 𝑑₀ = 0, 𝑑 ≤ 𝑑𝑖 ≤ 𝑁 and i = 1, 2, …, s. The 

number of codewords with weight 𝑑𝑖 is denoted as A𝑑𝑖. Hence, weight spectrum is {A𝑑𝑖 , ∀𝑖}.
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⚫ Proof:
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The function 𝟙(·) denotes the indicator function, where 𝟙(true) = 1 and 𝟙(false) = 0. Then, 

𝑃ML,e = ෍

ҧ𝑐∈Ȼ

෍

ത𝑦∈𝒴

Pr( ҧ𝑐, ത𝑦) ∙ 𝟙 DecoderML ത𝑦 ≠ ҧ𝑐 .

The set Ω ҧ𝑐𝑖 is defined as Ω ҧ𝑐𝑖 = ത𝑦 Pr ത𝑦 ҧ𝑐𝑖 > Pr ത𝑦 ҧ𝑐𝑖′ , ∀𝑖 ≠ 𝑖′ , which represents the 

space of all received signals ത𝑦 that will be decoded as the codeword ҧ𝑐𝑖 under the ML 

decision rule. The set 𝒴 is n-dimensional real vector space, and 𝒴 =∪ ҧ𝑐𝑖∈Ȼ
Ω ҧ𝑐𝑖.

ҧ𝑐𝑖

Ω ҧ𝑐𝑖
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By symmetry, let ҧ𝑐 be ത0. We have

𝑃ML,e = ෍

ҧ𝑐∈Ȼ

෍

ത𝑦∈𝒴\Ωത𝑐

Pr( ҧ𝑐, ത𝑦) = Pr( ҧ𝑐) ෍

ҧ𝑐∈Ȼ

෍

ത𝑦∈∪ത𝑐𝑖≠ത𝑐Ωത𝑐𝑖

Pr(ത𝑦| ҧ𝑐) = ෍

ത𝑦∈∪ത𝑐𝑖≠ത𝑐Ωത𝑐𝑖

Pr(ത𝑦| ҧ𝑐) .

The set Ω( ҧ𝑐𝑖, ҧ𝑐) is further defined as Ω( ҧ𝑐𝑖, ҧ𝑐) = ത𝑦 Pr ത𝑦 ҧ𝑐𝑖 > Pr ത𝑦 ҧ𝑐 , ҧ𝑐𝑖 ≠ ҧ𝑐 ⊃ Ω ҧ𝑐𝑖, 

which represents the space of ത𝑦 that will be decoded as ҧ𝑐𝑖 instead of ҧ𝑐. Hence

ҧ𝑐𝑖

Ω( ҧ𝑐𝑖, ҧ𝑐)

ҧ𝑐

𝑃ML,e = ෍

ത𝑦∈∪ത𝑐𝑖≠ത𝑐Ωത𝑐𝑖

Pr(ത𝑦| ҧ𝑐)

= ෍
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Pr(ത𝑦| ҧ𝑐)
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෍

ത𝑦∈Ω(ത𝑐𝑖,ത𝑐)

Pr ത𝑦 ҧ𝑐 .
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Under AWGN channel and BPSK modulation, 

𝑃ML,e ≤ ෍
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Then, pairwise error probability assuming 𝐸𝑐 = 1


